Environmental Protection Agency *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene, Chlorinated *Polyimides *Polypropylene Resins Polystyrene (Crystal) Polystyrene (Crystal) Modified *Polystyrene—Copolymers *Polystyrene—Acrylic Latexes Polystyrene Impact Resins Polystyrene Latex Polystyrene, Expandable Polystyrene, Expanded *Polysulfone Resins Polyvinyl Acetate *Polyvinyl Acetate—PVC Copolymers *Polyvinyl Acetate Copolymers *Polyvinyl Acetate Resins Polyvinyl Alcohol Resin Polyvinyl Chloride Polyvinyl Chloride, Chlorinated *Polyvinyl Ether-Maleic Anhydride *Polyvinyl Formal Resins *Polyvinylacetate—Methacrylic Copolymers *Polyvinylacetate Acrylic Copolymers *Polyvinylacetate-2-Ethylhexylacrylate Co- polymers Polyvinylidene Chloride *Polyvinylidene Chloride Copolymers *Polyvinylidene-Vinyl Chloride Resins *PVC Copolymers, Acrylates (Latex) *PVC Copolymers, Ethylene-Vinyl Chloride *Rosin Derivative Resins *Rosin Modified Resins *Rosin Resins *SAN Resins *Silicones: Silicone Resins *Silicones: Silicone Rubbers *Styrene Maleic Anhydride Resins Styrene Polymeric Residue *Styrene-Acrylic Copolymer Resins *Styrene-Acrylonitrile-Acrylates Copoly- *Styrene-Butadiene Resins *Styrene-Butadiene Resins (<50% Butadiene) *Styrene-Butadiene Resins (latex) *Styrene-Divinyl Benzene Resins (Ion Exchange) *Styrene-Methacrylate Terpolymer Resins *Styrene-Methyl Methacrylate Copolymers Butadiene, Vinyl *Stvrene. Toluene Terpolymers *Sulfonated Styrene-Maleic Anhydride Res- ins *Unsaturated Polyester Resins *Vinvl Toluene Resins *Vinyl Toluene-Acrylate Resins *Vinyl Toluene-Butadiene Resins *Vinyl Toluene-Methacrylate Resins *Vinvlacetate-N-Butvlacrylate Copolymers [52 FR 42568, Nov. 5, 1987, as amended at 57 FR 41844, Sept. 11, 1992] § 414.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control currently technology available (BPT). Except as provided in 40 CFR 125.30 through 125.32, and in 40 CFR 414.11(i) for point sources with production in two or more subcategories, any existing point source subject to this subpart must achieve discharges not exceeding the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentration listed in the following table. | Effluent characteristics | BPT Effluent
Limitations ¹ | | |--------------------------|--|--| | | Max-
imum
for
any
one
day | Max-
imum
for
month-
ly av-
erage | | BOD5 | 64 | 24 | | TSS | 130 | 40 | | На | (2) | (2) | ¹ All units except pH are milligrams per liter. ² Within the range of 6.0 to 9.0 at all times. [52 FR 42568, Nov. 5, 1987, as amended at 57 FR 41844, Sept. 11, 1992] § 414.42 Effluent limitations resenting the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). [Reserved] §414.43 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (a) The Agency has determined that for existing point sources whose total OCPSF production defined by §414.11 is less than or equal to five (5) million pounds of OCPSF products per year, the BPT level of treatment is the best available technology economically achievable. Accordingly, the Agency is not promulgating more stringent BAT limitations for these point sources. ## §414.44 - (b) Except as provided in paragraph (a) of this section and in 40 CFR 125.30 through 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with §414.91 of this part. - (c) Except as provided in paragraph (a) of this section and in 40 CFR 125.30 through 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with §414.101 of this part. #### 8414.44 New performance source standards (NSPS). - (a) Any new source that uses end-ofpipe biological treatment and is subject to this subpart must achieve discharges in accordance with §414.91 of this part, and also must not exceed the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentrations in the following table. - (b) Any new source that does not use end-of-pipe biological treatment and is subject to this subpart must achieve discharges in accordance with §414.101 of this part, and also must not exceed the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentrations in the following table. | | NSPS ¹ | | |--------------------------|---------------------------------------|--| | Effluent characteristics | Max-
imum
for any
one
day | Max-
imum
for
month-
ly aver-
age | | BOD5
TSS
pH | 64
130
(²) | 24
40
(²) | ¹ All units except pH are milligrams per liter. ²Within the range of 6.0 to 9.0 at all times. ## §414.45 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve discharges in accordance with §414.111. [58 FR 36892, July 9, 1993] ### §414.46 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7 any new source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve discharges in accordance with § 414.111. [58 FR 36892, July 9, 1993] # Subpart E—Thermosetting Resins ### §414.50 Applicability; description of the thermosetting resins category. The provisions of this subpart are applicable to the process wastewater discharges resulting from the manufacture of the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone-Formaldehyde Resins *Melamine Resins *Phenolic Resins *Polyacetal Resins Polyacrylamide *Polyurethane Prepolymers *Polyurethane Resins *Urea Formaldehyde Resins *Urea Resins [52 FR 42568, Nov. 5, 1987, as amended at 57 FR 41844, Sept. 11, 1992] #### §414.51 Effluent limitations resenting the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, and in 40 CFR 414.11(i) for point sources with production in two or more subcategories, any existing point source subject to this subpart must achieve discharges not exceeding the quantity (mass) determined by multiplying the process wastewater flow subject to this subpart times the concentration listed in the following table.